Когда люди соревнуются за выигрыши, они находятся в конкурентных играх, например, когда фирмы соревнуются за инновации, сотрудники соревнуются за повышение по службе или страны борются за ресурсы. Иногда конкуренты очень хорошо понимают мотивы, сильные и слабые стороны друг друга. В этом случае мы говорим об играх с полной информацией, и игроки ничему не учатся, наблюдая за игрой.
Однако чаще всего люди обладают неполной информацией о своих конкурентах. Это приводит к сложной динамике, когда игроки учатся на прошлых действиях. Это также вводит дополнительные уровни стратегии, поскольку игроки пытаются влиять на убеждения друг друга с помощью таких тактик, как сигнализация, блеф или когда один притворяется слабым, чтобы обмануть противника.
Рекомендация Сунь Цзы будет знакома любому, кто играл в покер.
«Однако чаще всего люди обладают неполной информацией о своих конкурентах. Это приводит к сложной динамике, когда игроки учатся на прошлых действиях. Это также вводит дополнительные уровни стратегии, поскольку игроки пытаются влиять на убеждения друг друга с помощью таких тактик, как сигнализация, блеф или когда один притворяется слабым, чтобы обмануть противника.»
Что сейчас и происходит повсюду… 🙁
Это да.
В других случаях игроки имеют схожие стимулы и хотят сотрудничать. Однако эффективность их сотрудничества часто зависит от их способности координировать действия.
Конкуренция, сотрудничество и координация: эти соображения пронизывают все аспекты нашей социальной жизни от небольших взаимодействий с нашими друзьями и партнерами до крупных между организациями и странами. Когда мы управляем этими взаимодействиями, мы постоянно стремимся предвидеть, чего хотят другие и как они воспринимают наши намерения, основывая наши выводы на прошлом опыте. С таким пониманием теория игр — это не просто абстрактная математическая конструкция, но и грамматика социальных взаимодействий.
Существует обширная и разнообразная литература о том, как популяции координируют способы взаимодействия и поведения в социальных ситуациях, от биологии (Эволюция и теория игр) до политологии (Истоки политического порядка). Игры повсюду.
Да эти достаточно старые выводы актуальны и по сей день. и даже более того они как будь то подстраиваютсья кем то 🙂